Research Article| Volume 50, ISSUE 7, P606-610, October 2012

Download started.


Cytogenetic findings in benign and malignant oral tumors – the role of autologous human plasma

  • Esther Manor
    Institute of Human Genetics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Search for articles by this author
  • Sarit Tetro
    Institute of Human Genetics, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Search for articles by this author
  • Peter A. Brennan
    Department of Oral and Maxillofacial Surgery, Queen Alexandra Hospital, Portsmouth PO6 3LY, UK
    Search for articles by this author
  • Lipa Bodner
    Corresponding author at: Department of Oral and Maxillofacial Surgery, Soroka University Medical Center, Ben-Gurion University of the Negev, P.O. Box 151, Beer-Sheva 84101, Israel. Tel.: +972 8 6400505; fax: +972 8 640 3651.
    Department of Oral and Maxillofacial Surgery, Soroka University Medical Center, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
    Search for articles by this author
Published:January 09, 2012DOI:


      The present study examined the possible use of autologous human plasma (AHP) to improve the in vitro culture for cytogenetics of benign and malignant oral tumor cells.
      The effect of AHP on the growth of a variety of benign and malignant head and neck tumor cells was studied by inverted microscope and cytogenetic analysis. Minced tumor biopsies of cases of hemangioma (HM), lipoma (LP), central giant cell granuloma (GC), pleomorphic adenoma (PA), schwannoma (SW), oral squamous cell carcinoma (SCC), Ewing sarcoma (ES), Merkel cell carcinoma (MCC) and adenoid cystic carcinoma (ACC), were cultured in medium supplemented with either AHP, allogeneic pooled human plasma (PHP), or fetal calf serum (FCS).
      More fibroblasts were seen in the FCS supplemented cultures, while in HP or PHP culture medium, more epithelial-like tumor cells were noted. The karyotypes of HM, LP, GC and PA were normal in all 3 different mediums.
      Cytogenetic analysis of SW and SCC revealed random numerical changes in all cultures. However, in AHP cultures a clone bearing translocation was found in SW t(2;13). In the SCC cultures one tumor had t(12;14) and the other t(3;21) translocations. Complex karyotype was found in all kinds of cultures in ES, MCC and ACC.
      AHP by itself does not cause chromosomal aberrations but may improve the ability to find chromosomal aberrations in some tumors over medium containing FCS. The spectrum of oral tumors where AHP can improve the cytogenetic analyses should be further studied on a greater number of tumors.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to British Journal of Oral and Maxillofacial Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Scully C.
        • Field J.K.
        • Tanzawa H.
        Genetic aberrations in oral or head and neck squamous cell carcinoma 2: chromosomal aberrations.
        Oral Oncol. 2000; 36: 311-327
        • Manor E.
        • Sion-Vardy N.
        • Bodner L.
        Cytogenetic and fluorescence in situ hybridization analysis of basal cell adenocarcinoma of the mandible.
        Cancer Genet Cyogenet. 2006; 166: 186-188
        • Manor E.
        • Bellaiche E.
        • Bodner L.
        Cytogenetic findings of a primary Merkel cell carcinoma.
        Cancer Genet Cyogenet. 2006; 169: 78-80
        • Manor E.
        • Bodner L.
        Chromosomal aberrations in oral solitary fibrous tumor.
        Cancer Genet Cyogenet. 2007; 174: 170-172
        • Manor E.
        • Tetro S.
        • Noyhous M.
        • Kachko P.
        • Bodne L.
        Translocation (2;13) and other chromosome abnormalities in intraosseous schwannoma of the mandible.
        Cancer Genet Cyogenet. 2009; 193: 116-118
        • Manor E.
        • Tetro S.
        • Bodner L.
        Translocation (12;14) and other chromosome abnormalities in squamous cell carcinoma of the tongue.
        Eur Arch Otorhinolaryngol. 2010; 267: 1273-1276
        • Freshney R.
        Culture of animal cells. A manual of basic technique.
        Wiley-Liss, New York1994 (p. 90–1)
        • Mandhal N.
        Methods in solid tumor cytogenetics.
        in: Rooney D.E. Czepulkowsky B.H. Human cytogenetics, vol. II, malignancy and acquired abnormalities. 2nd ed. Oxford University Press, New York1992: 155-187
        • Jin Y.
        • Mertens F.
        • Mandahl N.
        • Heim S.
        • Olegard C.
        • Wennerberg J.
        • et al.
        Chromosome abnormalities in eighty-three head and neck squamous cell carcinomas: influence of culture conditions on karytypic pattern.
        Cancer Res. 1993; 53: 2140-2146
        • Breems D.A.
        • Van Putten W.L.
        • Huijgens P.C.
        • Ossenkoppele G.J.
        • Verhoef G.E.
        • Verdonck L.F.
        • et al.
        Prognostic index for adult patients with acute myeloid leukemia in first relapse.
        J Clin Oncol. 2005; 23: 1969-1978
        • ISCN
        Shaffer L.G. Slovak M.L. Campbell L.J. An international system for human cytogenetic nomenclature. S. Karger, Basel2009
        • O’Brien S.G.
        • Guilhot F.
        • Larson R.A.
        • Gathmann I.
        • Baccarani M.
        • Cervantes F.
        • et al.
        Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase myeloid leukemia.
        New Engl J Med. 2003; 348: 994-1004
        • Rheinwald J.G.
        • Beckett M.A.
        Tumotigenetic keratocyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas.
        Cancer Res. 1981; 41: 1657-1663
        • Maurer H.R.
        Towards chemically defined serum-free media for mammalian cell culture.
        in: Animal cell culture – a practical approach. vol. 2. I.R.L. Press, Oxford, UK1992: 15-46
        • Borgiel-Marek H.
        • Kajdaniuk D.
        • Niedzielska I.
        • Kos-Kudla B.
        • Tarabura-Dragon J.
        • Marek B.
        Serum concentration of hepatocyte growth factor (HGF) in oral squamous cell carcinoma before and after surgery.
        Endokrynol Pol. 2008; 59: 467-470
        • Hong D.Y.
        • Lee B.J.
        • Lee J.C.
        • Choi J.S.
        • Wang S.G.
        • Ro J.H.
        Expression of VEGF, HGF, IL-6, IL-8, MMP-9, telerpmerase in peripheral blood of patients with head and neck squamous cell carcinoma.
        Clin Exp Otorhinolaryngol. 2009; 2 (2009): 186-192
        • Anselme K.
        • Broux O.
        • Noel B.
        • Bouxin B.
        • Bascoulergue G.
        • Dudermel A.F.
        • et al.
        In vitro control of human bone marrow stromal cells for bone tissue engineering.
        Tissue Eng. 2002; 8: 941-953
        • Hankey D.P.
        • McCabe R.E.
        • Doherty M.J.
        • Nolan P.C.
        • McAlinden M.G.
        • Nelson J.
        • et al.
        Enhancement of human osteoblast proliferation and phenotypic expression when cultured in human serum.
        Acta Orthop Scand. 2001; 72: 395-403
        • Kobayashi T.
        • Watanabe H.
        • Yanagawa T.
        • Tsutsumi S.
        • Kayakabe M.
        • Shinozaki T.
        • et al.
        Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum.
        J Bone Joint Surg Br. 2005; 87: 1426-1433
        • Koller M.R.
        • Maher R.G.
        • Manchel I.
        • Oxender M.
        • Smith A.K.
        Alternatives animal sera for human bone marrow cell expansion: human serum and serum-free media.
        J Hematother. 1998; 7: 413-423
        • Kuzentsov S.A.
        • Mankani M.H.
        • Robey P.G.
        Effect of human serum on human bone marrow stromal cells: ex vivo expansion and in vivo bone formation.
        Transplantation. 2000; 70: 1780-1787
        • McAlinden M.G.
        • Wilson D.G.
        Comparison of cancellous bone-derived cell proliferation in autologous human and fetal bovine serum.
        Cell Transplant. 2000; 9: 445-451
        • Ryang H.L.
        • Byung C.K.
        • IkSoo C.
        • Hanna K.
        • Hee S.C.
        • Keun T.S.
        • et al.
        Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue.
        Cell Physiol Biochem. 2004; 14: 311-324
        • Manor E.
        Human plasma accelerates immortalization of B lymphocytes by Epstein-Bar virus.
        Cell Prolif. 2008; 41: 292-298
        • Sen S.
        Aneuploidy and cancer.
        Curr Opin Oncol. 2000; 12: 82-88
      1. Mitelma F. Johansson B. Mertens F. Mitelman database of chromosome aberrations in cancer. 2009 (Chromosomes/Mitelman Database last updated on May 14, 2009. http://cgap.nci.nih)
        • Rao U.N.
        • Surti U.
        • Hoffner L.
        • Yaw K.
        Cytogenetic and histologic correlation of peripheral nerve sheath tumors of soft tissue.
        Cancer Genet Cytogenet. 1996; 88: 17-25
        • Bergamo N.A.
        • da Silva Viega L.C.
        • dos Reis P.P.
        • Nishimoto I.N.
        • Margrin J.
        • Kowalski L.P.
        • et al.
        Classic and molecular cytogenetic analyses reveal chromosomal gains and losses correlated with survival in head and neck cancer patients.
        Clin Cancer Res. 2005; 11: 621-631
        • Jin Y.
        • Jin C.
        • Lv M.
        • Tsao S.W.
        • Zhu J.
        • Wennerberg J.
        • et al.
        Karyotypic evolution and tumor progression in head and neck squamous cell carcinomas.
        Cancer Genet Cytogenet. 2005; 156: 1-7
        • Jin C.
        • Jin Y.
        • Wennerberg J.
        • Annertz K.
        • Enoksson J.
        • Mertens F.
        Cytogenetic abnormalities in 106 oral squamous cell carcinomas.
        Cancer Genet Cytogenet. 2006; 164: 44-53
        • Uchida K.
        • Oga A.
        • Okafuji M.
        • Mihara M.
        • Kawauchi S.
        • Furuya T.
        • et al.
        Molecular cytogenetic analysis of oral squamous cell carcinoma by comparative genomic hybridization, spectral karyotyping and fluorescence in situ hybridization.
        Cancer Genet Cytogenet. 2006; 167: 109-116
        • Alevizos I.
        • Blaeser B.
        • Gallagher G.
        • Ohyama H.
        • Wong D.T.W.
        • Todd R.
        Odontogenic carcinoma: a functional genomic comparison with oral mucosal squamous cell carcinoma.
        Oral Oncol. 2002; 38: 504