Advertisement

Tissue engineering technology and its possible applications in oral and maxillofacial surgery

      Abstract

      Tissue engineering is a rapidly advancing discipline that combines the attributes of biochemical and biomaterial engineering with cell transplantation to create bio-artificial tissues and organs. For the oral and maxillofacial surgeon, the reconstruction of maxillofacial defects in hard and soft tissues is an ongoing challenge. While autologous grafts and vascularised free flaps are the current gold standard, they are not without complications at both the donor and reconstructed sites. Tissue engineering, which aims to create tissue-matched, prefabricated, prevascularised bony or soft tissue composite grafts, or both, therefore has the potential to revolutionise practice in maxillofacial surgery. We review the technology of tissue engineering and its current and future applications within the specialty, and discuss contemporary obstacles yet to be overcome.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to British Journal of Oral and Maxillofacial Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Goessler U.R.
        • Stern-Straeter J.
        • Riedel K.
        • Bran G.M.
        • Hormann K.
        • Riedel F.
        Tissue engineering in head and neck reconstructive surgery: what type of tissue do we need?.
        Eur Archiv Otorhinolaryngol. 2007; 264: 1343-1356
        • Wang K.H.
        • Inman J.C.
        • Hayden R.E.
        Modern concepts in mandibular reconstruction in oral and oropharyngeal cancer.
        Curr Opin Otolaryngol Head Neck Surg. 2011; 19: 119-124
        • Susarla S.M.
        • Swanson E.
        • Gordon C.R.
        Craniomaxillofacial reconstruction using allotransplantation and tissue engineering: challenges, opportunities, and potential synergy.
        Ann Plast Surg. 2011; 67: 655-661
        • Langer R.
        • Vacanti J.P.
        Tissue engineering.
        Science. 1993; 260: 920-926
        • Sterodimas A.
        • De Faria J.
        • Correa W.E.
        • Pitanguy I.
        Tissue engineering in plastic surgery.
        Ann Plast Surg. 2009; 62: 97-103
        • Anderson J.M.
        The future of biomedical materials.
        J Mater Sci Mater Med. 2006; 17: 1025-1028
        • Salih V.
        Biodegradable scaffolds for tissue engineering.
        in: Di Silvio L. Cellular response to biomaterials. CRC Press, Boca Raton2008: 185-211
        • Di Silvio L.
        Bone tissue engineering and biomineralization.
        in: Boccaccini A.R. Gough J.E. Tissue engineering using ceramics and polymers. CRC Press, Boca Raton2007: 319-334
        • Liu Y.F.
        • Zhu F.D.
        • Dong X.T.
        • Peng W.
        Digital design of scaffold for mandibular defect repair based on tissue engineering.
        J Zhejiang Univ Sci B. 2011; 12: 769-779
        • Grayson W.L.
        • Fröhlich M.
        • Yeager K.
        • et al.
        Engineering anatomically shaped human bone grafts.
        Proc Natl Acad Sci U S A. 2010; 107: 3299-3304
        • Seo S.
        • Na K.
        Mesenchymal stem cell-based tissue engineering for chondrogenesis.
        J Biomed Biotechnol. 2011; 2011: 806891
        • Betz V.M.
        • Betz O.B.
        • Harris M.B.
        • Vrahas M.S.
        • Evans C.H.
        Bone tissue engineering and repair by gene therapy.
        Front Biosci. 2008; 13: 833-841
        • Depprich R.
        • Handschel J.
        • Wiesmann H.P.
        • Jäsche-Meyer J.
        • Meyer U.
        Use of bioreactors in maxillofaical tissue engineering.
        Br J Oral Maxillofac Surg. 2008; 46: 349-354
        • Warnke P.H.
        • Wiltfang J.
        • Springer I.
        • et al.
        Man as a living bioreactor: fate of an exogenously prepared customized tissue-engineered mandible.
        Biomaterials. 2006; 27: 3163-3167
        • Deb S.
        • Mandegaran R.
        • Di Silvio L.
        A porous scaffold for bone tissue engineering/45S5 Bioglass derived porous scaffold for co-culturing osteoblasts and endothelial cells.
        J Mater Sci Mater Med. 2010; 21: 893-905
        • Urist M.R.
        Bone: formation by autoinduction.
        Science. 1965; 150: 893-899
        • Scaglione S.
        • Quarto R.
        • Giannoni P.
        Stem cells and tissue scaffolds for bone repair.
        in: Di Silvio L. Cellular response to biomaterials. CRC Press, Boca Raton2008
        • Zhang Z.
        Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region.
        Front Med. 2011; 5: 401-413
        • Warnke P.
        • Springer I.
        • Wiltfang J.
        • et al.
        Growth and transplantation of a custom vascularised bone graft in a man.
        Lancet. 2004; 364: 766-770
        • Heliotis M.
        • Lavery K.M.
        • Ripamonti U.
        • Tsiridis E.
        • Di Silvio L.
        Transformation of a prefabricated hydroxyapatite/osteogenic protein-1 implant into a vascularised pedicled bone flap in the human chest.
        Int J Oral Maxillofac Surg. 2006; 35: 265-269
        • Orringer J.
        • Shaw W.
        • Borud L.
        • Freymiller E.
        • Wang S.
        • Markowitz B.
        Total mandibular and lower lip reconstruction with a prefabricated osteocutaneous free flap.
        Plast Reconstruct Surg. 1999; 104: 793-797
        • Herford A.
        • Cicciù M.
        Recombinant human bone morphogenetic protein type 2 jaw reconstruction in patients affected by giant cell tumor.
        J Craniofac Surg. 2010; 21: 1970-1975
        • Herford A.
        • Boyne P.
        Reconstruction of mandibular continuity defects with bome morphogenetic protein-2 (rhBMP-2).
        J Oral Maxillofac Surg. 2008; 66: 616-624
        • Chao M.
        • Donovan T.
        • Sotelo C.
        • Carstens M.H.
        In situ osteogenesis of hemimandible with rhBMP-2 in a 9-year old boy: osteoinduction via stem cell concentration.
        J Craniofac Surg. 2006; 17: 405-412
        • Carter T.G.
        • Brar P.S.
        • Tolas A.
        • Beirne O.R.
        Off-label use of recombinant human bone morphogenetic protein-2 (rhBMP-2) for reconstruction of mandibular bone defects in humans.
        J Oral Maxillofac Surg. 2008; 66: 1417-1425
        • Glied A.N.
        • Kraut R.A.
        Off-label use of rhBMP-2 for reconstruction of critical-sized mandibular defects.
        NY State Dent J. 2010; 76: 32-35
        • Bell R.B.
        • Gregoire C.
        Reconstruction of mandibular continuity defects using recombinant human bone morphogenetic protein 2: a note of caution in an atmosphere of exuberance.
        J Oral Maxillofac Surg. 2009; 67: 2673-2678
        • Voss P.
        • Sauerbier S.
        • Wiedmann-Al-Ahmad M.
        • et al.
        Bone regeneration in sinus lifts: comparing tissue-engineered bone and iliac bone.
        Br J Oral Maxillofac Surg. 2010; 48: 121-126
        • Schimming R.
        • Schmelzeisen R.
        Tissue-engineered bone for maxillary sinus augmentation.
        J Oral Maxillofac Surg. 2004; 62: 724-729
        • Boyne P.J.
        • Marx R.E.
        • Nevins M.
        • et al.
        A feasability study evaluating rhBMP-2/absorbable collagen sponge for maxillary sinus floor augmentation.
        Int J Periodont Restorat Dent. 1997; 17: 11-25
        • Triplett R.G.
        • Nevins M.
        • Marx R.E.
        • et al.
        Pivotal, randomized, parallel evaluation of recombinant human bone morphogenetic protein-2/absorbable collagen sponge and autogenous bone graft for maxillary sinus floor augmentation.
        J Oral Maxillofac Surg. 2009; 67: 1947-1960
        • Szabó G.
        • Huys L.
        • Coulthard P.
        • et al.
        A prospective multicenter randomized clinical trial of autogenous bone versus beta-tricalcium phosphate graft alone for bilateral sinus elevation: histologic and histomorphometric evaluation.
        In J Oral Maxillofac Implants. 2005; 20: 371-381
        • Esposito M.
        • Grusovin M.G.
        • Kwan S.
        • Worthington H.V.
        • Coulthard P.
        Interventions for replacing missing teeth: bone augmentation techniques for dental implant treatment.
        Cochrane Database Syst Rev. 2008; : CD003607
        • Rawashdeh M.A.
        • Telfah H.
        Secondary alveolar bone grafting: dilemma of donor site selection and morbidity.
        Br J Oral Maxillofac Surg. 2008; 46: 665-670
        • van Hout W.M.
        • Mink van der Molen A.B.
        • Breugem C.C.
        • Koole R.
        • Van Cann E.M.
        Recosntruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2.
        Clin Oral Invest. 2011; 15: 297-303
        • Alonso N.
        • Tanikawa D.Y.
        • Freitas Rda S.
        • Canan Jr., L.
        • Ozawa T.O.
        • Rocha D.L.
        Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients.
        Tissue Eng C Methods. 2010; 16: 1183-1189
        • Herford A.
        • Boyne P.
        • Rawson R.
        • Williams R.P.
        Bone morphogenetic protein-induced repair of the premaxillary cleft.
        J Oral Maxillofac Surg. 2007; 65: 2136-2141
        • Dickinson B.P.
        • Ashley R.K.
        • Wasson K.L.
        • O’Hara C.
        • Gabbay J.
        • Heller J.B.
        Reduced morbidity and improved healing with bone morphogenetic protein-2 in older patients with alveolar cleft defects.
        Plast Reconstruct Surg. 2008; 121: 209-217
        • Fallucco M.A.
        • Carstens M.H.
        Primary reconstruction of alveolar clefts using recombinant human bone morphogenetic protein-2: clinical and radiographic outcomes.
        J Craniofac Surg. 2009; 20: 1759-1764
        • Chin M.
        • Ng T.
        • Tom W.K.
        • Carstens M.
        Repair of alveolar clefts with recombinant human bone morphogenetic protein (rhBMP-2) in patients with clefts.
        J Craniofac Surg. 2005; 16: 778-789
        • Metcalfe A.D.
        • Ferguson M.W.
        Bioengineering skin using mechanisms of regeneration and repair.
        Biomaterials. 2007; 28: 5100-5113
        • Priya S.G.
        • Jungvid H.
        • Kumar A.
        Skin tissue engineering for tissue repair and regeneration.
        Tissue Eng B Rev. 2008; 14: 105-118
        • Rheinwald J.G.
        • Green H.
        Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells.
        Cell. 1975; 6: 331-343
        • Caruso D.M.
        • Schuh W.H.
        • Al-Kasspooles M.F.
        • Chen M.C.
        • Schiller W.R.
        Cultured composite autografts as coverage for an extensive body surface area burn: case report and review of the technology.
        Burns. 1999; 25: 771-779
        • Sheridan R.L.
        • Morgan J.R.
        • Cusick J.L.
        • Petras L.M.
        • Lydon M.M.
        • Tompkins R.G.
        Initial experience with a composite autologous skin substitute.
        Burns. 2001; 27: 421-424
        • Williams D.F.
        To engineer is to create: the link between engineering and regeneration.
        Trends Biotechnol. 2006; 24: 4-8
        • Supp D.M.
        • Boyce S.T.
        Engineered skin substitutes: practices and potentials.
        Clin Dermatol. 2005; 23: 403-412
        • Ikada Y.
        Challenges in tissue engineering.
        JR Soc Interface. 2006; 3: 589-601
        • Black A.F.
        • Berthod F.
        • L’heureux N.
        • Germain L.
        • Auger F.A.
        In vitro recosntruction of a human capillary-like network in a tissue-engineered skin equivalent.
        FASEB J. 1998; 12: 1331-1340
        • Supp D.M.
        • Wilson-Landy K.
        • Boyce S.T.
        Human dermal microvascular endothelial cells form vascular analogs in cultured skin substitutes after grafting to athymic mice.
        FASEB J. 2002; 16: 797-804
        • Swope V.B.
        • Supp A.D.
        • Cornelius J.R.
        • Babcock G.F.
        • Boyce S.T.
        Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes.
        J Invest Dermat. 1997; 109: 289-295
        • Supp D.M.
        • Boyce S.T.
        Overexpression of vascular endothelial growth factor accelerates early vascularization and improves healing of genetically modified cultured skin substitutes.
        J Burn Care Rehab. 2002; 23: 10-20
        • MacFarlane D.F.
        Current techniques in skin grafting.
        Adv Dermatol. 2006; 22: 125-138
        • Liu J.
        • Bian Z.
        • Kuijpers-Jagtman A.M.
        • Von den Hoff J.W.
        Skin and oral mucosa equivalents: construction and performance.
        Orthodont Craniofac Res. 2010; 13: 11-20
        • Mølsted K.
        Treatment outcome in cleft lip and palate: issues and perspectives.
        Crit Rev Oral Biol Med. 1999; 10: 225-239
        • Sauerbier S.
        • Gutwald R.
        • Wiedmann-Al-Ahmad M.
        • Lauer G.
        • Schmelzeisen R.
        Clinical application of tissue-engineered transplants. Part 1: mucosa.
        Clin Oral Implants Res. 2006; 17: 625-632
        • Izumi K.
        • Feinberg S.E.
        • Iida A.
        • Yashizama M.
        Intraoral grafting of an ex vivo produced oral mucosa equivalent: a preliminary report.
        Int J Oral Maxillofac Surg. 2003; 32: 188-197
        • Peramo A.
        • Marcelo C.L.
        • Feinberg S.E.
        Tissue engineering of lips and muco-cutaneous junctions: in vitro development of tissue engineered constructs of oral mucosa and skin for lip reconstruction.
        Tissue Eng C Methods. 2012; 18: 273-282
        • Khadka A.
        • Hu J.
        Autogenous grafts for condylar reconstruction in treatment of TMJ ankylosis: current concepts and considerations for the future.
        Int J Oral Maxillofac Surg. 2012; 41: 94-102
        • Naujoks C.
        • Meyer U.
        • Wiesmann H.P.
        • et al.
        Principles of cartilage tissue engineering in TMJ reconstruction.
        Head Face Med. 2008; 4: 3
        • Brittberg M.
        • Lindahl A.
        • Nilsson A.
        • Ohlsson C.
        • Isaksson O.
        • Peterson L.
        Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.
        N Eng J Med. 1994; 331: 889-895
        • Peterson L.
        • Minas T.
        • Brittberg M.
        • Nilsson A.
        • Sjögren-Jansson E.
        • Lindahl A.
        Two- to 9-year outcome after autologous chondrocyte transplantation of the knee.
        Clin Orthop Relat Res. 2000; 374: 212-234
        • Frenkel S.R.
        • Di Cesare P.E.
        Scaffolds for articular cartilage repair.
        Ann Biomed Eng. 2004; 32: 26-34
        • Zhou G.
        • Liu W.
        • Cui L.
        • Wang X.
        • Liu T.
        • Cao Y.
        Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells.
        Tissue Eng. 2006; 12: 3209-3221
        • Weng Y.
        • Cao Y.
        • Silva C.A.
        • Vacanti M.P.
        • Vacanti C.A.
        Tissue-engineered composites of bone and cartilage for mandible condylar recosntruction.
        J Oral Maxillofac Surg. 2001; 59: 185-190
        • Schek R.M.
        • Taboas J.M.
        • Hollister S.J.
        • Krebsbach P.H.
        Tissue engineering osteochondral implants for temporomandibular joint repair.
        Orthodont Craniofac Res. 2005; 8: 313-319
        • Alhadlaq A.
        • Mao J.J.
        Tissue-engineered osteochondral constructs in the shape of an articular condyle.
        J Bone Joint Surg. 2005; 87: 936-944
        • Dormer N.H.
        • Busaidy K.
        • Berkland C.J.
        • Detamore M.S.
        Osteochondral interface regeneration of rabbit mandibular condyle with bioactive signal gradients.
        J Oral Maxillofac Surg. 2011; 69: e50-e57
        • Allen K.D.
        • Athanasiou K.A.
        Tissue engineering of the TMJ disc: a review.
        Tissue Eng. 2006; 12: 1183-1196
        • Thomas M.
        • Grande D.
        • Haug R.H.
        Development of an in vitro temporomandibular joint cartilage analog.
        J Oral Maxillofac Surg. 1991; 49: 854-856
        • Puelacher W.C.
        • Wisser J.
        • Vacanti C.A.
        • Ferraro N.F.
        • Jaramillo D.
        • Vacanti J.P.
        Temporomandibular joint disc replacement made by tissue-engineered growth of cartilage.
        J Oral Maxillofac Surg. 1994; 52: 1172-1177
        • Detamore M.S.
        • Athanasiou K.A.
        Evaluation of three growth factors for TMJ disc tissue engineering.
        Ann Biomed Eng. 2005; 33: 383-390
        • Almarza A.J.
        • Athanasiou K.A.
        Effects of initial cell seeding density for the tissue engineering of the temporomandibular joint disc.
        Ann Biomed Eng. 2005; 33: 943-950
        • Allen K.D.
        • Athanasiou K.A.
        Scaffold and growth factor selection in temporomandibular joint disc engineering.
        J Dent Res. 2008; 87: 180-185
        • Mäenpää K.
        • Ellä V.
        • Mauno J.
        • et al.
        Use of adipose stem cells and polyactide discs for tissue engineering of the temporomandibular joint disc.
        JR Soc Interface. 2010; 7: 177-188
        • Aframian D.J.
        • Palmon A.
        Current status of the development of an artificial salivary gland.
        Tissue Eng B Rev. 2008; 14: 187-198
        • de Gastro G.J.
        • Frederico M.H.
        Evaluation, prevention and management of radiotherapy-induced xerostomia in head and neck cancer patients.
        Curr Opin Oncol. 2006; 18: 266-270
        • Aframian D.J.
        • Tran S.D.
        • Cukierman E.
        • Yamada K.M.
        • Baum B.J.
        Absence of tight junction formation in an allogeneic graft cell line used for developing an engineered artificial salivary gland.
        Tissue Eng. 2002; 8: 871-878
        • Tran S.D.
        • Wang J.
        • Bandyopadhyay B.C.
        • et al.
        Primary culture of polarized human salivary epithelial cells for use in developing an artificial salivary gland.
        Tissue Eng. 2005; 11: 172-181
        • Joraku A.
        • Sullivan C.A.
        • Yoo J.
        • Atala A.
        Tissue engineering of functional salivary gland tissue.
        Laryngoscope. 2005; 115: 244-248
        • Joraku A.
        • Sullivan C.A.
        • Yoo J.J.
        • Atala A.
        In-vitro reconstitution of three-dimensional human salivary gland tissue structures.
        Differentiation. 2007; 75: 318-324
        • Tran S.D.
        • Sugito T.
        • Dipasquale G.
        • et al.
        Re-engineering primary epithelial cells from rhesus monkey parotid glands for use in developing an artificial salivary gland.
        Tissue Eng. 2006; 12: 2939-2948
        • Gomillion C.
        • Burg K.
        Stem cells and adipose tissue engineering.
        Biomaterials. 2006; 27: 6052-6063
        • Alhadlaq A.
        • Tang M.
        • Mao J.J.
        Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimensions: implications in soft tissue augmentation and reconstruction.
        Tissue Eng. 2005; 11: 556-566
        • Subramanian A.
        • Krishnan U.
        • Sethuraman S.
        Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration.
        J Biomed Sci. 2009; 16: 108
        • di Summa P.G.
        • Kalbermatten D.F.
        • Pralong E.
        • Raffoul W.
        • Kingham P.J.
        • Terenghi G.
        Long-term in vivo regeneration of peripheral nerves through bioengineered nerve grafts.
        Neuroscience. 2011; 181: 278-291
        • Bach A.D.
        • Beier J.P.
        • Stern-Straeter J.
        • Horch R.E.
        Skeletal muscle tissue engineering.
        J Cell Mol Med. 2004; 8: 413-422
        • Eweida A.M.
        • Nabawi A.S.
        • Marei M.K.
        • Khalil M.R.
        • Elhammady H.A.
        Mandibular reconstruction using an axially vascularized tissue-engineered construct.
        Ann Surg Innov Res. 2011; 5: 2
        • Bramfeldt H.
        • Sabra G.
        • Centis V.
        • Vermette P.
        Scaffold vascularization: a challenge for three-dimensional tissue engineering.
        Curr Med Chem. 2010; 17: 3944-3967
        • Kaully T.
        • Kaufman-Francis K.
        • Lesman A.
        • Levenberg S.
        Vascularization-the conduit to viable engineered tissues.
        Tissue Eng B Rev. 2009; 15: 159-169
        • Choi N.W.
        • Cabodi M.
        • Held B.
        • Gleghorn J.P.
        • Bonassar L.J.
        • Stroock A.D.
        Microfluidic scaffolds for tissue engineering.
        Nat Mater. 2007; 6: 908-915
        • Nahmias Y.
        • Schwartz R.E.
        • Verfaillie C.M.
        • Odde D.J.
        Laser-guided direct writing for three-dimensional tissue engineering.
        Biotechnol Bioeng. 2005; 92: 129-136
        • Ott H.C.
        • Matthiesen T.S.
        • Goh S.K.
        • et al.
        Perfusion-decellularised matrix: using nature's platform to engineer a bioartificial heart.
        Nat Med. 2008; 14: 213-221
        • Kneser U.
        • Polykandriotis E.
        • Ohnolz J.
        • et al.
        Engineering of vascularized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an ateriovenous loop.
        Tissue Eng. 2006; 12: 1721-1731
        • Boyne P.J.
        • Lilly L.C.
        • Marx R.E.
        • et al.
        De novo bone induction by recombinant human bone morhogenetic protein-2 (rhBMP-2) in maxillary sinus floor augmentation.
        J Oral Maxillofac Surg. 2005; 63: 1693-1707
        • Woo E.J.
        Adverse events reported after the use of recombinant human bone morphogenetic protein 2.
        J Oral Maxillofac Surg. 2012; 70: 765-767
        • Ripamonti U.
        • Tsiridis E.
        • Ferretti C.
        • Kerawala C.J.
        • Mantalaris A.
        • Heliotis M.
        Perspectives in regenerative medicine and tissue engineering of bone.
        Br J Oral Maxillofac Surg. 2011; 49: 507-509
        • Xiao C.
        • Zhou H.
        • Ge S.
        • et al.
        Repair of orbital wall defects using biocoral scaffolds combined with bone marrow stromal cells enhanced by human bone morphogenetic protein-2 in a canine model.
        Int J Mol Med. 2010; 26: 517-525