Advertisement
Research Article|Articles in Press

A new technology for the removal of corundum residues on dental implants

      Abstract

      Surface modification is an important measure to improve dental implants. Corundum residues, which are part of current dental implant blasting, disappeared on Straumann dental implants in recent publications. We further evaluated this new cleaning technology by evaluating the surface of 4 different Straumann implants using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The involved technology fits to a Straumann patent involving a dextran coating allowing easy corundum particle removal by aqueous solution.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to British Journal of Oral and Maxillofacial Surgery
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. Institut-Straumann-AG: 510k Summary SLActive Implants - K053088. In: Release notes, Food and Drug Administration 2006.

        • Enlow D.H.
        The Canal system in bone.
        in: Enlow D.H. Principles of bone remodelling. edn. Charles C Thomas Publisher, Springfield, IL, USA1963: 60-74
        • Draenert F.G.
        • Huetzen D.
        • Neff A.
        • Mueller W.E.
        Vertical bone augmentation procedures: basics and techniques in dental implantology.
        Journal of biomedical materials research Part A. 2014; 102: 1605-1613
        • Schindeler A.
        • McDonald M.M.
        • Bokko P.
        • Little D.G.
        Bone remodeling during fracture repair: The cellular picture.
        Semin Cell Dev Biol. 2008; 19: 459-466
        • Rupp F.
        • Liang L.
        • Geis-Gerstorfer J.
        • Scheideler L.
        • Huttig F.
        Surface characteristics of dental implants: A review.
        Dent Mater. 2018; 34: 40-57
        • Buser D.
        • Nydegger T.
        • Oxland T.
        • Cochran D.L.
        • Schenk R.K.
        • Hirt H.P.
        • Snetivy D.
        • Nolte L.P.
        Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs.
        J Biomed Mater Res. 1999; 45: 75-83
        • Al-Nawas B.
        • Groetz K.A.
        • Goetz H.
        • Duschner H.
        • Wagner W.
        Comparative histomorphometry and resonance frequency analysis of implants with moderately rough surfaces in a loaded animal model.
        Clin Oral Implants Res. 2008; 19: 1-8
        • Schwarz F.
        • Sager M.
        • Ferrari D.
        • Herten M.
        • Wieland M.
        • Becker J.
        Bone regeneration in dehiscence-type defects at non-submerged and submerged chemically modified (SLActive) and conventional SLA titanium implants: an immunohistochemical study in dogs.
        J Clin Periodontol. 2008; 35: 64-75
        • Li D.
        • Ferguson S.J.
        • Beutler T.
        • Cochran D.L.
        • Sittig C.
        • Hirt H.P.
        • Buser D.
        Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants.
        J Biomed Mater Res. 2002; 60: 325-332
        • Canabarro A.
        • Diniz M.G.
        • Paciornik S.
        • Carvalho L.
        • Sampaio E.M.
        • Beloti M.M.
        • Rosa A.L.
        • Fischer R.G.
        High concentration of residual aluminum oxide on titanium surface inhibits extracellular matrix mineralization.
        J Biomed Mater Res A. 2008; 87: 588-597
        • Le Guehennec L.
        • Soueidan A.
        • Layrolle P.
        • Amouriq Y.
        Surface treatments of titanium dental implants for rapid osseointegration.
        Dent Mater. 2007; 23: 844-854
        • Szmukler-Moncler S.
        • Testori T.
        • Bernard J.P.
        Etched implants: a comparative surface analysis of four implant systems.
        J Biomed Mater Res B Appl Biomater. 2004; 69: 46-57
        • Schupbach P.
        • Glauser R.
        • Bauer S.
        Al2O3 Particles on Titanium Dental Implant Systems following Sandblasting and Acid-Etching Process.
        Int J Biomater. 2019; 2019: 6318429
        • Orsini G.
        • Assenza B.
        • Scarano A.
        • Piattelli M.
        • Piattelli A.
        Surface analysis of machined versus sandblasted and acid-etched titanium implants.
        The International journal of oral & maxillofacial implants. 2000; 15: 779-784
        • Gehrke S.A.
        • Taschieri S.
        • Del Fabbro M.
        • Coelho P.G.
        Positive Biomechanical Effects of Titanium Oxide for Sandblasting Implant Surface as an Alternative to Aluminium Oxide.
        J Oral Implantol. 2015; 41: 515-522
        • Duddeck D.U.
        • Albrektsson T.
        • Wennerberg A.
        • Larsson C.
        • Beuer F.
        On the Cleanliness of Different Oral Implant Systems: A Pilot Study.
        J Clin Med. 2019; 8
      2. Berner S, Rohner A: WO2018/189185 - DENTAL IMPLANT. In. Edited by AG SH; 2018.

      3. Berner S, Rohner A: US2020/0078142 - DENTAL IMPLANT. In. Edited by AG SH; 2020.

        • Rupp F.
        • Scheideler L.
        • Olshanska N.
        • de Wild M.
        • Wieland M.
        • Geis-Gerstorfer J.
        Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces.
        J Biomed Mater Res A. 2006; 76: 323-334
        • Arslan N.P.
        • Keles O.N.
        • Gonul-Baltaci N.
        Effect of Titanium Dioxide and Silver Nanoparticles on Mitochondrial Dynamics in Mouse Testis Tissue.
        Biol Trace Elem Res. 2021;
        • Brand W.
        • Peters R.J.B.
        • Braakhuis H.M.
        • Maslankiewicz L.
        • Oomen A.G.
        Possible effects of titanium dioxide particles on human liver, intestinal tissue, spleen and kidney after oral exposure.
        Nanotoxicology. 2020; 14: 985-1007
        • Dedman C.J.
        • King A.M.
        • Christie-Oleza J.A.
        • Davies G.L.
        Environmentally relevant concentrations of titanium dioxide nanoparticles pose negligible risk to marine microbes.
        Environ Sci Nano. 2021; 8: 1236-1255
        • Fang Y.
        • Dai M.
        • Ye W.
        • Li F.
        • Sun H.
        • Wei J.
        • Li B.
        Damaging effects of TiO2 nanoparticles on the ovarian cells of Bombyx mori.
        Biol Trace Elem Res. 2021;
        • Shabbir S.
        • Kulyar M.F.
        • Bhutta Z.A.
        • Boruah P.
        • Asif M.
        Toxicological Consequences of Titanium Dioxide Nanoparticles (TiO2NPs) and Their Jeopardy to Human Population.
        Bionanoscience. 2021; : 1-12
        • Yang S.M.
        • Park J.B.
        • Ko Y.
        Use of confocal microscopy for quantification of plastic remnants on rough titanium after instrumentation and evaluation of efficacy of removal.
        The International journal of oral & maxillofacial implants. 2015; 30: 519-525
      4. Wieland MS, C.; Brunette, D.M.; Textor, M.; Spencer, N.D.: Measurement and evaluation of the chemical composition and topography of titanium implant surfaces. In: Bone engineering. edn. Edited by Davies JE. Toronto, Canada: em squared Inc.; 2000: 163-182.

      5. Berner S, Cueille C: WO2019/063711- PROCESS FOR THE PREPARATION OF NANOSTRUCTURES ON A DENTAL IMPLANT In. Edited by AG SH; 2018.

      6. Berner S: WO2014/195025 - DENTAL IMPLANT In. Edited by AG SH; 2014.

      7. Berner S, Bieli H: WO2014/048555 - A DENTAL IMPLANT OR ABUTMENT COMPRISING A CERAMIC BODY COVERED WITH A MONOMOLECULAR PHOSPHATE LAYER. In. Edited by AG SH; 2014.